Rechercher
Contactez-nous Suivez-nous sur Twitter En francais English Language
 

Abonnez-vous gratuitement à notre NEWSLETTER

Newsletter FR

Newsletter EN

Vulnérabilités

Se désabonner

JFrog Ltd. annonce une nouvelle intégration dans le domaine du machine learning (ML) entre JFrog Artifactory et MLflow

avril 2024 par Marc Jacob

JFrog Ltd. annonce une nouvelle intégration dans le domaine du machine learning (ML) entre JFrog Artifactory et MLflow, une plateforme logicielle open source initialement développée par Databricks. Suite aux intégrations natives dévoilées cette année avec Qwak et Amazon SageMaker, l’éditeur développe aujourd’hui leurs solutions d’IA universelles en proposant aux organisations un système d’enregistrements unique, avec Artifactory comme registre de modèles de référence. Cette nouvelle intégration offre aux utilisateurs de JFrog une solution puissante pour créer, gérer et fournir des modèles de machine learning et applications basées sur une IA générative (GenAI) aux côtés d’autres composants de développement logiciel, tout cela dans le cadre d’un workflow DevSecOps rationalisé de bout en bout. En rendant chaque modèle de machine learning immuable et traçable, les entreprises peuvent en valider la sécurité et la provenance, et observer ainsi des pratiques responsables en matière d’IA.

Selon les résultats d’une enquête spécialisée, au moins 80 % des modèles de machine learning conçus pour créer de nouvelles applications optimisées par l’IA ne sont pas déployés. Ceci est dû en grande partie à des problématiques d’ordre technique liées à l’intégration de ces modèles avec les processus opérationnels existants. L’intégration entre JFrog et MLflow aide les organisations à résoudre ce problème en unissant de manière transparente la célèbre solution de développement de modèles open source aux workflows DevOps matures des organisations. Ces dernières bénéficient ainsi d’une visibilité, d’une automatisation, d’un contrôle et d’une traçabilité de bout en bout sur leurs modèles de ML, de l’expérimentation à leur mise en production.

Suite à ses intégrations réussies avec l’ensemble des principaux outils de machine learning du marché, JFrog Artifactory s’unit désormais à MLflow pour permettre aux ingénieurs en machine learning, et aux développeurs Python, Java et R de travailler avec leurs outils préférés, en faisant d’Artifactory leur registre de modèles de référence. La plateforme universelle et évolutive de JFrog sert également d’intermédiaire vers Hugging Face, et ce en natif. Les développeurs peuvent ainsi accéder en permanence aux modèles open source disponibles, tout en détectant simultanément les modèles malveillants et en veillant à la conformité des licences. La solution est également livrée avec les fonctionnalités de sécurité logicielle et d’analyse fournies par la plateforme JFrog, et conçues pour éviter les risques au niveau des applications de machine learning.

MLSecOps - des modèles fiables et soignés

L’équipe de recherche en sécurité de JFrog a récemment découvert des centaines d’instances de modèles d’IA/ML malveillants sur le référentiel public Hugging Face, ce qui présente un risque important de violations de données ou d’attaques. Cet incident met en lumière les menaces potentielles dissimulées au sein des systèmes alimentés par l’IA, et souligne la nécessité de faire preuve d’une vigilance constante en matière de sécurité et d’adopter une approche proactive en matière de cyberhygiène.

L’intégration entre JFrog Artifactory et MLflow permettra aux utilisateurs de créer, d’entraîner et de déployer plus facilement des modèles en apportant une attention particulière aux problématiques de sécurité, de gouvernance, de gestion des versions, de traçabilité et de fiabilité grâce à l’environnement d’analyse de JFrog. Ils pourront ainsi examiner rigoureusement chaque nouveau modèle téléchargé sur Hugging Face.


Voir les articles précédents

    

Voir les articles suivants